jueves, 6 de diciembre de 2007

pasos para instalar una red inalambrica

1. Introducción

La instalación de una red en una pequeña empresa para compartir fácilmente conexiones a Internet, archivos e impresoras no requiere una gran inversión de tiempo ni de dinero. Para una red inalámbrica se precisan dos componentes principales:

Estación base (también denominada enrutador o puerta de enlace)

Adaptador de red para cada equipo de la red
En una red inalámbrica, la comunicación entre el adaptador inalámbrico de cada equipo conectado a la red y la estación base inalámbrica se realiza por ondas de radio. Las estaciones base y los adaptadores se ajusta a uno de los estándares de transmisión de radio 802.11 desarrollados por el IEEE (Institute of Electrical and Electronics Engineers). Las versiones más populares de estos estándares reciben con frecuencia la denominación Wi-Fi.
Puede adquirir estaciones base y adaptadores de red a través de los principales distribuidores de informática. Para su instalación, sólo es necesario seguir las instrucciones que acompañan a estos productos. Cuando haya terminado, puede proceder a la configuración de la red. En los siguientes pasos se describe la configuración de grupos de trabajos y el uso compartido de archivos e impresoras, tanto para las redes inalámbricas como para las de cable.

2. Establecimiento de grupos de trabajo
Una de las ventajas de la interconexión de los equipos de una pequeña empresa por medio de una red consiste en que todos los usuarios pueden utilizar determinados archivos y carpetas y trabajar con una misma impresora. Esto ocurre cuando el usuario de un equipo pone a disposición de otros usuarios archivos, carpetas o una impresora conectada a la red, en un proceso denominado "compartir". Una vez compartidos los archivos, las carpetas o la impresora, otros usuarios conectados a la red pueden obtener acceso a esos recursos.
Para facilitar este acceso multiusuario, todos los equipos que comparten o tienen acceso a recursos compartidos deben haber sido asignados previamente al mismo grupo de trabajo.
Después de que se cree un grupo de trabajo, éste resulta visible cuando se abre Mis sitios de red. (Haga clic en el icono correspondiente a Mis sitios de red, en el Escritorio). La posibilidad de ver un grupo de trabajo completo simplifica la visualización y el acceso a recursos compartidos.
Para especificar un grupo de trabajo de un equipo en el sistema operativo Windows XP:
1.
Haga clic en Inicio, después en Panel de control y, a continuación, haga doble clic en Sistema. Si no ve un icono de Sistema, haga clic en Rendimiento y mantenimiento y, a continuación, haga clic en Sistema.
2.
Haga clic en la ficha Nombre de equipo.
3.
Haga clic en Cambiar y después, en el cuadro Grupo de trabajo, escriba el nombre del grupo de trabajo que desea crear o al que quiere pertenecer.
Es importante tener presentes las convenciones de nomenclatura al configurar o agregar equipos a los grupos de trabajo. Un nombre de grupo de trabajo debe ser:

Igual para todos los equipos que integran el grupo de trabajo

Distinto del nombre de cualquier equipo que pertenezca al grupo de trabajo
Por su parte, los nombres de los equipos deben ser exclusivos:

Ningún otro equipo del grupo de trabajo puede tener el mismo nombre

El nombre del equipo también debe ser distinto del nombre del grupo de trabajo

3. Compartir archivos, carpetas o unidades
El uso compartido de los recursos se configura desde el equipo que contiene los archivos y carpetas que se desea compartir. Puede compartir una unidad íntegramente, de modo que todos los archivos y carpetas de esa unidad estén disponibles para otros equipos; o bien, puede compartir sólo determinadas carpetas.
Para compartir un archivo, una carpeta o una unidad en Windows XP:
1.
Habilite el uso compartido de archivos del equipo si aún no lo ha hecho; para ello, ejecute el Asistente para configuración de red. Haga clic en Inicio, después en Panel de control, a continuación en Conexiones de red e Internet y, por último, en Asistente para configuración de red. Sólo tiene que realizar una vez esta operación en el equipo. Nota: Debe tener privilegios administrativos en el equipo para compartir archivos y carpetas en Windows XP.
2.
Abra Mi PC.
3.
Desplácese hasta la carpeta que contiene los archivos que desea poner a disposición de otros equipos y selecciónela.
4.
En el menú Archivo, haga clic en Compartir y seguridad.
5.
Haga clic en Compartir esta carpeta, en la ficha Red. De manera predeterminada, la carpeta queda a disposición de todos los demás equipos de la red, con acceso de sólo lectura. Para que todos los usuarios tengan acceso de lectura y escritura, active Permitir que usuarios de la red cambien mis archivos.
Para que los archivos compartidos estén a disposición de otros usuarios, el equipo en el que se encuentran los archivos debe estar encendido y conectado a la red. Utilice Mis sitios de red (Microsoft Windows XP) o Entorno de red (Windows 2000 y Windows 98) para desplazarse hasta los archivos y carpetas compartidos de la red y tener acceso a éstos.
Puede evitar tener que desplazarse hasta el recurso compartido mediante Mis sitios de red si "asigna" o "conecta" el equipo al recurso. Cuando se realiza una asignación de una carpeta compartida o una unidad a una letra de unidad del equipo, es posible utilizar Mi PC o el Explorador de Windows para verla.
Para asignar una carpeta compartida o una unidad a una letra de unidad:
1.
En el Explorador de Windows o Mi PC, haga clic en el menú Herramientas y, a continuación, haga clic en Conectar a unidad de red.
2.
Desplácese hasta al ubicación del recurso de red de la asignación (es decir, con el que desea conectarse) y haga clic en Aceptar.

3.Seleccione una letra de unidad y haga clic en Finalizar.


4. Compartir una impresora o un escáner
Hay dos tipos de impresoras compartidas:

Impresoras de red: Se conectan directamente a una red (por lo general a un dispositivo denominado servidor de impresión) en lugar de conectarse a un equipo determinado.

Impresoras locales: Este uso es más corriente; se conectan a un solo equipo de una red. Mediante la configuración del uso compartido de impresoras, puede compartir una impresora local desde los demás equipos de la red.
Después de agregar un equipo a un grupo de trabajo, puede compartir cualquier impresora que esté conectada al equipo. Para compartir una impresora, abra el panel de control Impresoras; para ello, haga clic en Inicio, elija Configuración (o Panel de control) y después haga clic en Impresoras (o Impresoras y faxes). Seleccione la impresora que desea compartir y, en el menú Archivo, haga clic en Compartir, o bien haga clic en Propiedades y, a continuación, haga clic en la ficha Compartir. En el cuadro de diálogo Compartir, seleccione si desea compartir o no la impresora.
También puede compartir nuevas impresoras que instale en cualquiera de los equipos conectados a la red. Si el Asistente para agregar impresoras detecta que el equipo está conectado a una red, en el momento de la instalación le ofrece la posibilidad de compartir la impresora.
Si no puede obtener acceso a la opción Compartir o aparece un mensaje en el que se indica que no está activada la función de compartir impresoras, deberá habilitar el componente Compartir archivos e impresoras de Windows. En Windows XP puede realizar esa operación desde la página Propiedades de la conexión de red. En otros sistemas operativos Windows puede utilizar el panel de control de red.
A continuación se explican otros aspectos que conviene conocer acerca del uso compartido de impresoras y escáneres:

Asignar un nombre a una impresora compartida Cuando seleccione la opción de compartir una impresora, deberá asignarle un nombre en el cuadro de diálogo Compartir para identificarla en el grupo de trabajo. El nombre tiene que ser distinto de cualquier otro nombre de dispositivo del grupo de trabajo, y tampoco debe coincidir con el nombre del grupo de trabajo. Utilice un nombre que facilite la identificación; por ejemplo, la ubicación o la marca y el modelo.

Configurar otros equipos para que utilicen una impresora compartida. Para utilizar una impresora compartida, cada equipo debe tener instalado el controlador de impresora que funciona con el sistema operativo en cuestión. Puede instalar los controladores de impresora mediante la opción Agregar impresoras del panel de control Impresoras en todos los equipos que van a utilizarla. Instale la impresora del modo habitual, con la opción Una impresora de red o una impresora conectada a otro equipo seleccionada. A continuación puede desplazarse hasta la impresora compartida (siempre y cuando ésta y el equipo al que está conectada se encuentren encendidos y disponibles a través de la red) y terminar la instalación.

En equipos en los que se ejecuta Windows XP y Windows 2000 también puede instalar los controladores para otros sistemas operativos cuando realice por primera vez la operación de compartir la impresora. Para ello, haga clic en Controladores adicionales en el cuadro de diálogo Compartir. No es necesario que instale los controladores en los demás equipos.
Después de configurar la impresora compartida, puede enviar trabajos de impresión desde cualquiera de los equipos del grupo de trabajo, exactamente del mismo modo que con una impresora local.

5. Reglas y seguridad
Si va a compartir archivos en una red inalámbrica o con equipos conectados a Internet, la seguridad constituye una consideración importante. Si no adopta medidas que contribuyan a proteger la red, es posible que algún intruso tenga acceso a los archivos compartidos a través de Internet o de la red inalámbrica.
Existen varios medios que sirven de ayuda para proteger los equipos conectados a través de una red inalámbrica, y que permiten evitar accesos no autorizados:

Instale un servidor de seguridad entre Internet y la red. Los servidores de seguridad de software, como el Servidor de seguridad de conexión a Internet de Windows, pueden interferir en el uso compartido de los archivos a través de la red de área local. Utilice como alternativa estaciones base de cable o inalámbricas con un servidor de seguridad de hardware integrado que ayude a reforzar la seguridad a la vez que permite un uso compartido sin restricciones de los archivos a través de la red local.

Habilite el acceso protegido de fidelidad inalámbrica (WPA) o el cifrado de privacidad equivalente por cable (WEP) de 128 bits como medidas para proteger los archivos compartidos frente a intentos de intrusión.

Asigne contraseñas a las carpetas que desee proteger mediante un control de accesos en el nivel de los recursos compartidos de Windows. Este mecanismo de protección también se conoce como "permisos".

tipos de cableado

Principales tipos de cables

Actualmente, la gran mayoría de las redes están conectadas por algún tipo de cableado, que actúa como medio de transmisión por donde pasan las señales entre los equipos. Hay disponibles una gran cantidad de tipos de cables para cubrir las necesidades y tamaños de las diferentes redes, desde las más pequeñas a las más grandes.
Existe una gran cantidad de tipos de cables. Algunos fabricantes de cables publican un catálogos con más de 2.000 tipos diferentes que se pueden agrupar en tres grupos principales que conectan la mayoría de las redes:
Cable coaxial.
Cable de par trenzado (apantallado y no apantallado).
Cable de fibra óptica.
Cable coaxial
Hubo un tiempo donde el cable coaxial fue el más utilizado. Existían dos importantes razones para la utilización de este cable: era relativamente barato, y era ligero, flexible y sencillo de manejar.
Un cable coaxial consta de un núcleo de hilo de cobre rodeado por un aislante, un apantallamiento de metal trenzado y una cubierta externa.
El término apantallamiento hace referencia al trenzado o malla de metal (u otro material) que rodea algunos tipos de cable. El apantallamiento protege los datos transmitidos absorbiendo las señales electrónicas espúreas, llamadas ruido, de forma que no pasan por el cable y no distorsionan los datos. Al cable que contiene una lámina aislante y una capa de apantallamiento de metal trenzado se le denomina cable apantallado doble. Para entornos que están sometidos a grandes interferencias, se encuentra disponible un apantallamiento cuádruple. Este apantallamiento consta de dos láminas aislantes, y dos capas de apantallamiento de metal trenzado,
El núcleo de un cable coaxial transporta señales electrónicas que forman los datos. Este núcleo puede ser sólido o de hilos. Si el núcleo es sólido, normalmente es de cobre.
Rodeando al núcleo hay una capa aislante dieléctrica que la separa de la malla de hilo. La malla de hilo trenzada actúa como masa, y protege al núcleo del ruido eléctrico y de la intermodulación (la intermodulación es la señal que sale de un hilo adyacente).
El núcleo de conducción y la malla de hilos deben estar separados uno del otro. Si llegaran a tocarse, el cable experimentaría un cortocircuito, y el ruido o las señales que se encuentren perdidas en la malla circularían por el hilo de cobre. Un cortocircuito eléctrico ocurre cuando dos hilos de conducción o un hilo y una tierra se ponen en contacto. Este contacto causa un flujo directo de corriente (o datos) en un camino no deseado. En el caso de una instalación eléctrica común, un cortocircuito causará el chispazo y el fundido de un fusible o del interruptor automático. Con dispositivos electrónicos que utilizan bajos voltajes, el resultado no es tan dramático, y a menudo casi no se detecta. Estos cortocircuitos de bajo voltaje generalmente causan un fallo en el dispositivo y lo habitual es que se pierdan los datos.
Una cubierta exterior no conductora (normalmente hecha de goma, Teflón o plástico) rodea todo el cable.
El cable coaxial es más resistente a interferencias y atenuación que el cable de par trenzado.
La malla de hilos protectora absorbe las señales electrónicas perdidas, de forma que no afecten a los datos que se envían a través del cable de cobre interno. Por esta razón, el cable coaxial es una buena opción para grandes distancias y para soportar de forma fiable grandes cantidades de datos con un equipamiento poco sofisticado.
Tipos de cable coaxial
Hay dos tipos de cable coaxial:
Cable fino (Thinnet).
Cable grueso (Thicknet).
El tipo de cable coaxial más apropiado depende de 1as necesidades de la red en particular.
Cable Thinnet (Ethernet fino). El cable Thinnet es un cable coaxial flexible de unos 0,64 centímetros de grueso (0,25 pulgadas). Este tipo de cable se puede utilizar para la mayoría de los tipos de instalaciones de redes, ya que es un cable flexible y fácil de manejar.
El cable coaxial Thinnet puede transportar una señal hasta una distancia aproximada de 185 metros (unos 607 pies) antes de que la señal comience a sufrir atenuación.
Los fabricantes de cables han acordado denominaciones específicas para los diferentes tipos de cables. El cable Thinnet está incluido en un grupo que se denomina la familia RG-58 y tiene una impedancia de 50 ohm. (La impedancia es la resistencia, medida en ohmios, a la corriente alterna que circula en un hilo.)
La característica principal de la familia RG-58 es el núcleo central de cobre y los diferentes tipos de cable de esta familia son:
RG-58/U: Núcleo de cobre sólido.
RG-58 A/U: Núcleo de hilos trenzados.
RG-58 C/U: Especificación militar de RG-58 A/U.
RG-59: Transmisión en banda ancha, como el cable de televisión.
RG-60: Mayor diámetro y considerado para frecuencias más altas que RG-59, pero también utilizado para transmisiones de banda ancha.
RG-62: Redes ARCnet.
Cable Thicknet (Ethernet grueso). El cable Thicknet es un cable coaxial relativamente rígido de aproximadamente 1,27 centímetros de diámetro. Al cable Thicknet a veces se le denomina Ethernet estándar debido a que fue el primer tipo de cable utilizado con la conocida arquitectura de red Ethernet. El núcleo de cobre del cable Thicknet es más grueso que el del cable Thinnet.
Cuanto mayor sea el grosor del núcleo de cobre, más lejos puede transportar las señales. El cable Thicknet puede llevar una señal a 500 metros. Por tanto, debido a la capacidad de Thicknet para poder soportar transferencia de datos a distancias mayores, a veces se utiliza como enlace central o backbone para conectar varias redes más pequeñas basadas en Thinnet.
Un transceiver conecta el cable coaxial Thinnet a un cable coaxial Thicknet mayor. Un transceiver diseñado para Ethernet Thicknet incluye un conector conocido como «vampiro» o «perforador» para establecer la conexión física real con el núcleo Thicknet. Este conector se abre paso por la capa aislante y se pone en contacto directo con el núcleo de conducción. La conexión desde el transceiver a la tarjeta de red se realiza utilizando un cable de transceiver para conectar el conector del puerto de la interfaz de conexión de unidad (AUI) a la tarjeta. Un conector de puerto AUI para Thicknet también recibe el nombre de conector Digital Intel Xerox (DIX) (nombre dado por las tres compañías que lo desarrollaron y sus estándares relacionados) o como conector dB-15.
Cable Thinnet frente a Thicknet. Como regla general, los cables más gruesos son más difíciles de manejar. El cable fino es flexible, fácil de instalar y relativamente barato. El cable grueso no se dobla fácilmente y, por tanto, es más complicado de instalar. Éste es un factor importante cuando una instalación necesita llevar el cable a través de espacios estrechos, como conductos y canales. El cable grueso es más caro que el cable fino, pero transporta la señal más lejos.
Hardware de conexión del cable coaxial
Tanto el cable Thinnet como el Thicknet utilizan un componente de conexión llamado conector BNC, para realizar las conexiones entre el cable y los equipos. Existen varios componentes importantes en la familia BNC, incluyendo los siguientes:
El conector de cable BNC. El conector de cable BNC está soldado, o incrustado, en el extremo de un cable.
El conector BNC T. Este conector conecta la tarjeta de red (NIC) del equipo con el cable de la red.
Conector acoplador (barrel) BNC. Este conector se utiliza para unir dos cables Thinnet para obtener uno de mayor longitud.
Terminador BNC. El terminador BNC cierra el extremo del cable del bus para absorber las señales perdidas.
El origen de las siglas BNC no está claro, y se le han atribuido muchos nombres, desde «British Naval Connector» a «Bayonet Neill-Councelman». Haremos referencia a esta familia hardware simplemente como BNC, debido a que no hay consenso en el nombre apropiado y a que en la industria de la tecnología las referencias se hacen simplemente como conectores del tipo BNC.
Tipos de cable coaxial y normas de incendios
El tipo de cable que se debe utilizar depende del lugar donde se vayan a colocar los cables en la oficina. Los cables coaxiales pueden ser de dos tipos:
Cloruro de polivinilo (PVC).
Plenum.
El cloruro de polivinilo (PVC) es un tipo de plástico utilizado para construir el aíslante y la clavija del cable en la mayoría de los tipos de cable coaxial. El cable coaxial de PVC es flexible y se puede instalar fácilmente a través de la superficie de una oficina. Sin embargo, cuando se quema, desprende gases tóxicos.
Un plenum. Es el espacio muerto que hay en muchas construcciones entre el falso techo y el piso de arriba; se utiliza para que circule aire frío y caliente a través del edificio. Las normas de incendios indican instrucciones muy específicas sobre el tipo de cableado que se puede mandar a través de esta zona, debido a que cualquier humo o gas en el plenum puede mezclarse con el aire que se respira en el edificio.
El cableado de tipo plenum contiene materiales especiales en su aislamiento y en 1a clavija del cable. Estos materiales están certificados como resistentes al fuego y producen una mínima cantidad de humo; esto reduce los humos químicos tóxicos. El cable plenum se puede utilizar en espacios plenum y en sitios verticales (en una pared, por ejemplo) sin conductos. Sin embargo, el cableado plenum es más caro y menos flexible que el PVC.
Para instalar el cable de red en la oficina sería necesario consultar las normas de la zona sobre electricidad y fuego para la regulación y requerimientos específicos.
Consideraciones sobre el cable coaxial
En la actualidad es difícil que tenga que tomar una decisión sobre cable coaxial, no obstante, considere las siguientes características del cable coaxial.
Utilice el cable coaxial si necesita un medio que pueda:
Transmitir voz, vídeo y datos.
Transmitir datos a distancias mayores de lo que es posible con un cableado menos caro
Ofrecer una tecnología familiar con una seguridad de los datos aceptable.
Cable de par trenzado
En su forma más simple, un cable de par trenzado consta de dos hilos de cobre aislados y entrelazados. Hay dos tipos de cables de par trenzado: cable de par trenzado sin apantallar (UTP) y par trenzado apantallado (STP).
A menudo se agrupan una serie de hilos de par trenzado y se encierran en un revestimiento protector para formar un cable. El número total de pares que hay en un cable puede variar. El trenzado elimina el ruido eléctrico de los pares adyacentes y de otras fuentes como motores, relés y transformadores.
Cable de par trenzado sin apantallar (UTP)
El UTP, con la especificación 10BaseT, es el tipo más conocido de cable de par trenzado y ha sido el cableado LAN más utilizado en los últimos años. El segmento máximo de longitud de cable es de 100 metros.
El cable UTP tradicional consta de dos hilos de cobre aislados. Las especificaciones UTP dictan el número de entrelazados permitidos por pie de cable; el número de entrelazados depende del objetivo con el que se instale el cable.
La especificación 568A Commercial Building Wiring Standard de la Asociación de Industrias Electrónicas e Industrias de la Telecomunicación (EIA/TIA) especifica el tipo de cable UTP que se va a utilizar en una gran variedad de situaciones y construcciones. El objetivo es asegurar la coherencia de los productos para los clientes. Estos estándares definen cinco categorías de UTP:
Categoría 1. Hace referencia al cable telefónico UTP tradicional que resulta adecuado para transmitir voz, pero no datos. La mayoría de los cables telefónicos instalados antes de 1983 eran cables de Categoría 1.
Categoría 2. Esta categoría certifica el cable UTP para transmisión de datos de hasta 4 megabits por segundo (mbps), Este cable consta de cuatro pares trenzados de hilo de cobre.
Categoría 3. Esta categoría certifica el cable UTP para transmisión de datos de hasta 16 mbps. Este cable consta de cuatro pares trenzados de hilo de cobre con tres entrelazados por pie.
Categoría 4. Esta categoría certifica el cable UTP para transmisión de datos de hasta 20 mbps. Este cable consta de cuatro pares trenzados de hilo de cobre.
Categoría 5. Esta categoría certifica el cable UTP para transmisión de datos de hasta 100 mbps. Este cable consta de cuatro pares trenzados de hilo de cobre.
Categoría 5a. También conocida como Categoría 5+ ó Cat5e. Ofrece mejores prestaciones que el estándar de Categoría 5. Para ello se deben cumplir especificaciones tales como una atenuación al ratio crosstalk (ARC) de 10 dB a 155 Mhz y 4 pares para la comprobación del Power Sum NEXT. Este estándar todavía no está aprobado
Nivel 7. Proporciona al menos el doble de ancho de banda que la Categoría 5 y la capacidad de soportar Gigabit Ethernet a 100 m. El ARC mínimo de 10 dB debe alcanzarse a 200 Mhz y el cableado debe soportar pruebas de Power Sum NEXT, más estrictas que las de los cables de Categoría 5 Avanzada.
La mayoría de los sistemas telefónicos utilizan uno de los tipos de UTP. De hecho, una razón por la que UTP es tan conocido es debido a que muchas construcciones están preparadas para sistemas telefónicos de par trenzado. Como parte del proceso previo al cableado, se instala UTP extra para cumplir las necesidades de cableado futuro. Si el cable de par trenzado preinstalado es de un nivel suficiente para soportar la transmisión de datos, se puede utilizar para una red de equipos. Sin embargo, hay que tener mucho cuidado, porque el hilo telefónico común podría no tener entrelazados y otras características eléctricas necesarias para garantizar la seguridad y nítida transmisión de los datos del equipo.
La intermodulación es un problema posible que puede darse con todos los tipos de cableado (la intermodulación se define como aquellas señales de una línea que interfieren con las señales de otra línea.)
UTP es particularmente susceptible a la intermodulación, pero cuanto mayor sea el número de entrelazados por pie de cable, mayor será la protección contra las interferencias.
Cable de par trenzado apantallado (STP)
El cable STP utiliza una envoltura con cobre trenzado, más protectora y de mayor calidad que la usada en el cable UTP. STP también utiliza una lámina rodeando cada uno de los pares de hilos. Esto ofrece un excelente apantallamiento en los STP para proteger los datos transmitidos de intermodulaciones exteriores, lo que permite soportar mayores tasas de transmisión que los UTP a distancias mayores.
Componentes del cable de par trenzado
Aunque hayamos definido el cable de par trenzado por el número de hilos y su posibilidad de transmitir datos, son necesarios una serie de componentes adicionales para completar su instalación. Al igual que sucede con el cable telefónico, el cable de red de par trenzado necesita unos conectores y otro hardware para asegurar una correcta instalación.
Elementos de conexión
El cable de par trenzado utiliza conectores telefónicos RJ-45 para conectar a un equipo. Éstos son similares a los conectores telefónicas RJ11. Aunque los conectores RJ-11 y RJ-45 parezcan iguales a primera vista, hay diferencias importantes entre ellos.
El conector RJ-45 contiene ocho conexiones de cable, mientras que el RJ-11 sólo contiene cuatro.
Existe una serie de componentes que ayudan a organizar las grandes instalaciones UTP y a facilitar su manejo.
Armarios y racks de distribución. Los armarios y los racks de distribución pueden crear más sitio para los cables en aquellos lugares donde no hay mucho espacio libre en el suelo. Su uso ayuda a organizar una red que tiene muchas conexiones.
Paneles de conexiones ampliables. Existen diferentes versiones que admiten hasta 96 puertos y alcanzan velocidades de transmisión de hasta 100 Mbps.
Clavijas. Estas clavijas RJ-45 dobles o simples se conectan en paneles de conexiones y placas de pared y alcanzan velocidades de datos de hasta 100 Mbps.
Placas de pared. Éstas permiten dos o más enganches.
Consideraciones sobre el cableado de par trenzado
El cable de par trenzado se utiliza si:
La LAN tiene una limitación de presupuesto.
Se desea una instalación relativamente sencilla, donde las conexiones de los equipos sean simples.
No se utiliza el cable de par trenzado si:
La LAN necesita un gran nivel de seguridad y se debe estar absolutamente seguro de la integridad de los datos.
Los datos se deben transmitir a largas distancias y a altas velocidades.
Diferencia entre las Categorías de cable UTP.
El estándar TIA/EIA 568 especifica el cable le Categoría 5 como un medio para la transmisión de datos a frecuencias de hasta 100 MHz. El Modo de Transmisión Asíncrona (Asynchronous Transfer Mode ATM), trabaja a 155 MHz. La Gigabit Ethernet a 1 GHz.
La necesidad de incrementar el ancho de banda nunca cesa, cuanto más se tenga, más se necesita. Las aplicaciones cada vez se vuelven más complejas, y los ficheros cada vez son más grandes. A medida que su red se vaya congestionando con más datos, la velocidad se va relentizando y no volverá a ser rápida nunca más. Las buenas noticias son que la próxima generación de cableado está en marcha. Sin embargo, tendrá que tener cuidado con el cableado que esté instalado hoy, y asegurarse que cumplirá con sus necesidades futuras.
Categoría 5. La TIA/EIA 568A especifica solamente las Categorías para los cables de pares trenzados sin apantallar (UTP). Cada una se basa en la capacidad del cable para soportar prestaciones máximas y mínimas. Hasta hace poco, la Categoría 5 era el grado superior especificado por el estándar TIA/EIA. Se definió para ser capaz de soportar velocidades de red de hasta 100 Mbps en transmisiones de voz/datos a frecuencias de hasta100 MHz. Las designaciones de Categoría están determinadas por las prestaciones UTP. El cable de Categoría 5 a100 MHz, debe tener el NEXT de 32 dB/304,8 mts. y una gama de atenuación de 67dB/304,8 mts, Para cumplir con el estándar, los cables deben cumplir solamente las mínimos estipulados, Con cable de Categoría 5 debidamente instalado, podrá esperar alcanzar las máximas prestaciones, las cuales, de acuerdo con los estándares, alcanzarán la máxima velocidad de traspaso de Mbps,
Categoría 5a. La principal diferencia entre la Categoría 5 (568A) y Categoría 5a (568A-5) es que algunas de las especificaciones han sido realizadas de forma más estricta en la versión más avanzada. Ambas trabajan a frecuencias de 100 MHz. Pero la Categoría 5e cumple las siguientes especificaciones: NEXT: 35 dB; PS-NEXT: 32 dB, ELFEXT: 23.8 dB; PS-ELFEXT: 20.8 dB, Pérdida por Retorno: 20.1 dB, y Retardo: 45 ns, Con estas mejoras, podrá tener transmisiones Ethernet con 4 pares, sin problemas, full-duplex, sobre cable UTP. En el futuro, la mayoría de las instalaciones requerirán cableado de Categoría 5e así como sus componentes.
Categoría 6 y posteriores. Ahora ya puede obtener un cableado de Categoría 6, aunque el estándar no ha sido todavía creado. Pero los equipos de trabajo que realizan los estándares están trabajando en ello. La Categoría 6 espera soportar frecuencias de 250 MHz, dos veces y media más que la Categoría 5. En un futuro cercano, la TIA/EIA está estudiando el estándar para la Categoría 7, para un ancho de banda de hasta 600 MHz. La Categoría 7, usará un nuevo y aún no determinado tipo de conector.
Cable de fibra óptica
En el cable de fibra óptica las señales que se transportan son señales digitales de datos en forma de pulsos modulados de luz. Esta es una forma relativamente segura de enviar datos debido a que, a diferencia de los cables de cobre que llevan los datos en forma de señales electrónicas, los cables de fibra óptica transportan impulsos no eléctricos. Esto significa que el cable de fibra óptica no se puede pinchar y sus datos no se pueden robar.
El cable de fibra óptica es apropiado para transmitir datos a velocidades muy altas y con grandes capacidades debido a la carencia de atenuación de la señal y a su pureza.
Composición del cable de fibra óptica
Una fibra óptica consta de un cilindro de vidrio extremadamente delgado, denominado núcleo, recubierto por una capa de vidrio concéntrica, conocida como revestimiento. Las fibras a veces son de plástico. El plástico es más fácil de instalar, pero no puede llevar los pulsos de luz a distancias tan grandes como el vidrio.
Debido a que los hilos de vidrio pasan las señales en una sola dirección, un cable consta de dos hilos en envolturas separadas. Un hilo transmite y el otro recibe. Una capa de plástico de refuerzo alrededor de cada hilo de vidrio y las fibras Kevlar ofrecen solidez. En el conector de fibra óptica, las fibras de Kevlar se colocan entre los dos cables. Al igual que sus homólogos (par trenzado y coaxial), los cables de fibra óptica se encierran en un revestimiento de plástico para su protección.
Las transmisiones del cable de fibra óptica no están sujetas a intermodulaciones eléctricas y son extremadamente rápidas, comúnmente transmiten a unos 100 Mbps, con velocidades demostradas de hasta 1 gigabit por segundo (Gbps). Pueden transportar una señal (el pulso de luz) varios kilómetros.
Consideraciones sobre el cable de fibra óptica
El cable de fibra óptica se utiliza si:
Necesita transmitir datos a velocidades muy altas y a grandes distancias en un medio muy seguro.
El cable de fibra óptica no se utiliza si:
Tiene un presupuesto limitado.
No tiene el suficiente conocimiento para instalar y conectar los dispositivos de forma apropiada.
El precio del cable de fibra óptica es competitivo con el precio del cable de cobre alto de gama. Cada vez se hace más sencilla la utilización del cable de fibra óptica, y las técnicas de pulido y terminación requieren menos conocimientos que hace unos años.
Transmisión de la señal
Se pueden utilizar dos técnicas para transmitir las señales codificadas a través de un cable: la transmisión en banda base y la transmisión en banda ancha.
Transmisión en banda base
Los sistemas en banda base utilizan señalización digital en un único canal. Las señales fluyen en forma de pulsos discretos de electricidad o luz. Con la transmisión en banda base, se utiliza la capacidad completa del canal de comunicación para transmitir una única señal de datos. La señal digital utiliza todo el ancho de banda del cable, constituyendo un solo canal. El término ancho de banda hace referencia a la capacidad de transferir datos, o a la velocidad de transmisión, de un sistema de comunicaciones digital, medido en bits por segundo (bps).
La señal viaja a lo largo del cable de red y, por tanto, gradualmente va disminuyendo su intensidad, y puede llegar a distorsionarse. Si la longitud del cable es demasiado larga, la señal recibida puede no ser reconocida o puede ser tergiversada.
Como medida de protección, los sistemas en banda base a veces utilizan repetidores para recibir las señales y retransmitirlas a su intensidad y definición original. Esto incrementa la longitud útil de un cable.
Transmisión en banda ancha
Los sistemas de banda ancha utilizan señalización analógica y un rango de frecuencias. Con la transmisión analógica, las señales son continuas y no discretas. Las señales circulan a través del medio físico en forma de ondas ópticas o electromagnéticas. Con la transmisión en banda ancha, el flujo de la señal es unidireccional.
Si el ancho de banda disponible es suficiente, varios sistemas de transmisión analógica, como la televisión por cable y transmisiones de redes, se pueden mantener simultáneamente en el mismo cable.
A cada sistema de transmisión se le asigna una parte del ancho de banda total. Todos los dispositivos asociados con un sistema de transmisión dado, por ejemplo, todas los equipos que utilicen un cable LAN, deben ser configuradas, de forma que sólo utilicen las frecuencias que están dentro del rango asignado.
Mientras que los sistemas de banda base utilizan repetidores, los sistemas de banda ancha utilizan amplificadores para regenerar las señales analógicas y su intensidad original.
En la transmisión en banda ancha, las señales circulan en una sola dirección, de forma que debe existir dos caminos para el flujo de datos para que una señal alcance todos los dispositivos. Hay dos formas comunes de realizar esto:
A través de una configuración de banda ancha con división del medio, el ancho de banda se divide en dos canales, cada uno usando una frecuencia o rango de frecuencias diferentes. Un canal transmite señales y el otro las recibe.
Configuración en banda ancha con doble cable, a cada dispositivo se unen dos cables. Un cable se utiliza para enviar y el otro para recibir.
Incremento del rendimiento del ancho de banda
El incremento de la velocidad de transmisión de datos es tan importante como el aumento del tamaño de la red y del tráfico de los datos. Maximizando el uso del canal de datos, podemos intercambiar más datos en menos tiempo. Al formato más básico de transmisión de datos o de información se le denomina unidireccional o simplex. Esto significa que los datos se envían en una única dirección, desde el emisor al receptor. Ejemplos de transmisiones unidireccionales son la radio y la televisión. Con la transmisión unidireccional, los problemas que se encuentran durante la transmisión no se detectan ni corrigen. Incluso el emisor no tiene seguridad de que los datos son recibidos.
En el siguiente nivel de transmisión de datos, llamado transmisión alterna o half-duplex, los datos se envían en ambas direcciones, pero en un momento dado sólo se envían en una dirección. Ejemplos de tecnología que utilizan la comunicación alterna son las radios de onda corta y los walkie-talkies. Con la transmisión alterna se puede incorporar detección de errores y peticiones para reenvío de datos erróneos.
La World Wide Web es una forma de transmisión de datos alterna. Se envía una petición a una página Web y se espera mientras la está devolviendo. La mayoría de las comunicaciones por módem utilizan transmisión de datos alterna.
El método más eficiente para la transmisión de datos consiste en la utilización de la transmisión bidireccional o full-duplex, donde los datos pueden ser transmitidos y recibidos al mismo tiempo. Un buen ejemplo es una conexión de cable que no sólo permite que se reciban canales de televisión, sino que además soporta el teléfono y la conexión a Internet. Un teléfono es una conexión bidireccional porque permite hablar al mismo tiempo a las dos partes. Los módems, por diseño, son dispositivos alternos. Éstos envían o reciben datos, conmutando entre el modo de transmisión y el modo de recepción. Se puede crear un canal de módem bidireccional usando dos módems y dos líneas telefónicas. Lo único que se necesita es que los dos equipos estén conectados y configurados para soportar este tipo de comunicación.
El sistema de cableado de IBM
IBM ha desarrollado su propio sistema de cableado completo con sus propios números, estándares, especificaciones y denominaciones. Sin embargo, muchos de estos parámetros son similares a especificaciones diferentes de las de IBM.
IBM introdujo su sistema de cableado en 1984. El objetivo de este sistema era asegurar que el cableado y los conectores pudieran satisfacer las especificaciones de sus equipos. La especificación de IBM incluye los siguientes componentes:
Conectores de cable.
Placas.
Paneles de distribución.
Tipos de cables.
El único componente del cableado de IBM que es totalmente distinto de los demás es el conector, que es diferente del BNC estándar y de otros conectores. Hay conectores de IBM tipo A, conocidos como conectores de datos universales. No son ni machos ni hembras; se pueden conectar a otros colocando uno sobre otro. Estos conectores de IBM necesitan paneles de distribución y placas especiales para adaptar su configuración única.
El sistema de cableado de IBM clasifica el cable en varios tipos. Por ejemplo, en el sistema de IBM, al cable de categoría 3 (cable UTP de voz) se le denomina de Tipo 3. Las definiciones del cable especifican cuál es el cable más apropiado para un entorno o aplicación dada. El hilo indicado en el sistema se ajusta a los estándares American Wire Gauge (AWG).
AWG: La medida estándar del cable
A menudo, las medidas del cable se expresan con un número seguido de las iniciales AWG (AWG es un sistema de medida para hilos que especifica su grosor). Conforme el grosor del hilo aumenta, el número AWG disminuye. A menudo el hilo de teléfono se utiliza como punto de referencia; tiene un grosor de 22 AWG. Un hilo con un grosor de 14 AWG es más grueso que el hilo telefónico y uno de 26 AWG es más delgado que el del teléfono.
Sistema de cableado IBM
Tipo IBM
Etiqueta estándar
Descripción
Tipo 1
Cable de par trenzado apantallado (STP).
Dos pares de hilos de 22 AWG rodeados por una cubierta exterior trenzada; usado para equipos y unidades de acceso multiestación (MAU).
Tipo 2
Cable de voz y datos.
Cable apantallado de datos y voz con dos pares trenzados de hilos de 22 AWG para datos, una cubierta trenzada exterior y cuatro pares trenzados de hilos de 26 AWG para voz.
Tipo 3
Cable de voz.
Consta de cuatro cables de par trenzado no apantallados, sólidos, de 22 ó 24 AWG.
Tipo 4
No definido.

Tipo 5
Cable de fibra óptica.
Dos fibras ópticas multimodo de 62,5/125 micras (el estándar de la industria).
Tipo 6
Cable de conexión de datos.
Dos cables de par trenzado de 26 AWG con doble lámina y apantallamiento trenzado.
Tipo 7
No definido.

Tipo 8
Cable de moqueta.
Situado en una regleta del suelo para utilizar bajo moquetas; dos cables de par trenzado de 26 AWG; limitado a la mitad de distancia que el cable de Tipo 1.
Tipo 9
Cable plenum
Cumple las normas de incendios. Dos cables de par trenzado apantallados.
Una Unidad de acceso multiestación (Multistation Access Unit, MAU) es un dispositivo hub en una red Token Ring que conecta los equipos en una distribución física en estrella, pero utiliza el anillo lógico requerido en las redes Token Ring.
Selección del cableado
Para determinar cuál es el mejor cable para un lugar determinado habrá que tener en cuenta distintos factores:
Carga de tráfico en la red
Nivel de seguridad requerida en la red
Distancia que debe cubrir el cable?
Opciones disponibles del cable
Presupuesto para el cable
Cuanto mayor sea la protección del cable frente al ruido eléctrico interno y externo, llevará una señal clara más lejos y más rápido. Sin embargo, la mayor velocidad, claridad y seguridad del cable implica un mayor coste.
Al igual que sucede con la mayoría de los componentes de las redes, es importante el tipo de cable que se adquiera. Si se trabaja para una gran organización y se escoge el cable más barato, inicialmente los contables estarían muy complacidos, pero pronto podrían observar que la LAN es inadecuada en la velocidad de transmisión y en la seguridad de los datos.
El tipo de cable que se adquiera va a estar en función de las necesidades del sitio en particular. El cableado que se adquiere para instalar una LAN para un negocio pequeño tiene unos requerimientos diferentes del cableado necesario para una gran organización, como por ejemplo, una institución bancaria.
Logística de la instalación
En una pequeña instalación donde las distancias son pequeñas y la seguridad no es un tema importante, no tiene sentido elegir un cable grueso, caro y pesado.
Apantallamiento
El nivel de apantallamiento requerido afectará al coste del cable. La mayoría de las redes utilizan algún tipo de cable apantallado. Será necesario un mayor apantallamiento cuanto mayor sea el ruido del área por donde va el cable. También el mismo apantallamiento en un cable de tipo plenum será más caro.
Intermodulación
La intermodulación y el ruido pueden causar graves problemas en redes grandes, donde la integridad de los datos es fundamental. El cableado barato tiene poca resistencia a campos eléctricos exteriores generados por líneas de corriente eléctrica, motores, relés y transmisores de radio. Esto lo hace susceptible al ruido y a la intermodulación.
Características
Cable coaxial Thinnet (10Base2)
Cable coaxial Thicknet (10Base5)
Cable de par trenzado (10Base T)1
Cable de fibra óptica
Coste del cable
Más que UTP
Más que Thinnet
UTP: menos caroSTP: más que Thinnet
Más que Thinnet, pero menos que Thicknet.
Longitud útil del cable2
185 metros (unos 607 pies)
500 metros (unos 1.640 pies)
UTP y STP: 100 metros (unos 328 pies)
2 kilómetros (6.562 pies).
Velocidad de transmisión
4-100 Mbps
4-100 Mbps
UTP:4-100 Mbps STP:16-500 Mbps
100 Mbps o más (> 1Gbps).
Flexibilidad
Bastante flexible
Menos flexible que Thinnet
UTP: más flexibleSTP: menos flexible que UTP
Menos flexible que Thicknet
Facilidad de instalación
Sencillo de instalar
Medianamente sencillo de instalar
UTP: muy sencillo; a menudo preinstalado STP: medianamente sencillo
Difícil de instalar.
Susceptibilidad a interferencias
Buena resistencia a las interferencias
Buena resistencia a las interferencias
UTP: muy susceptible STP: buena resistencia
No susceptible a las interferencias.
Características especiales
Las componentes de soporte electrónico son menos caras que las del cable de par trenzado
Las componentes de soporte electrónico son menos caras que las del cable de par trenzado
UTP: Las mismas que los hilos telefónicos; a menudo preinstaladas en construcciones.STP: Soporta índices de transmisión mayores que UTP
Soporta voz, datos y vídeo.
Usos presentados
Medio para grandes sitios con altas necesidades de seguridad
Redes Thinnet
UTP: sitios más pequeños con presupuesto limitadoSTP: Token Ring de cualquier tamaño
Instalación de cualquier tamaño que requiera velocidad y una gran integridad y seguridad en los datos.
1Esta columna ofrece información sobre el cable de par trenzado sin apantallar (UPT) y para el cable de par trenzado apantallado (STP).
2La longitud útil del cable puede variar con instalaciones de redes especificas. Conforme la tecnología mejora, también se incrementa la longitud útil del cable.
Velocidad de transmisión
La velocidad de transmisión se mide en megabits por segundo. Un punto de referencia estándar para la transmisión de la LAN actual en un cable de cobre es de 100 Mbps. El cable de fibra óptica trasmite a más de 1 Gbps.
Coste
Los cables de grado más alto pueden transportar datos con seguridad a grandes distancias, pero son relativamente caros; los cables de menor grado, los cuales proporcionan menos seguridad en los datos a distancias más cortas, son relativamente más baratos.
Atenuación de la señal
Los diferentes tipos de cables tienen diferentes índices de atenuación; por tanto, las especificaciones del cable recomendadas especifican límites de longitud para los diferentes tipos. Si una señal sufre demasiada atenuación, el equipo receptor no podrá interpretarla. La mayoría de los equipos tienen sistemas de comprobación de errores que generarán una retransmisión si la señal es demasiado tenue para que se entienda. Sin embargo, la retransmisión lleva su tiempo y reduce la velocidad de la red.

requerimientos para insalar una red

Requerimientos de sistemas.

Una vez que se está listo para instalar la red de área local, es necesario considerar algunos requerimientos por parte del personal que se encargará de instalar la red en el lugar previsto. Estos requerimientos se harán al cliente o al encargado del lugar donde instalaremos la red. Una empresa ecuatoriana denominada “Interactive” que proporciona servicios de banda ancha satelital en Ecuador, marca algunos requerimientos hacia sus clientes para poder prestar sus servicios, y que se pueden aplicar como requerimientos de sistemas cuando se instala una LAN: o Suministrar el espacio físico requerido para la instalación de los equipos.o Permisos para la instalación de equipo y materiales en dicho espacio.o Permisos para trabajar en la instalación y configuración de los equipos en cada oficina y edificio donde se instala.o Permisos para realizar obras civiles si llega a ser necesario.o Suministro de energía eléctrica 110 Volts CA. Estos requerimientos proporcionan y garantizan en cierta medida la libertad de instalar adecuadamente la LAN, ya que se debe tomar en cuenta que la red local puede ser implementada en instalaciones que requieren de ciertos cuidados especiales por parte de la institución a la que se le instalará la red, y por razones de seguridad dicha institución puede tener algunas restricciones de acceso hacia ciertos puntos de la misma.Estos requerimientos pueden variar dependiendo de la situación que se presente, y aunque es lógico el hecho de que en el lugar donde se instalará la red se proporcionarán las facilidades necesarias, es mejor hacer del conocimiento de las personas pertinentes, los requerimientos necesarios antes de continuar con la instalación de la red, y así evitar contratiempos futuros que afecten el plan de trabajo tanto del personal encargado de instalar a red, como del usuario de la misma.4.2 Dependencia de software. La dependencia de software se refiere al hecho de instalar ciertas aplicaciones o paquetes en las computadoras de la red, y que estos pueden necesitar de algunos componentes de software adicionales para su correcto funcionamiento, lo que conlleva a la instalación de paquetes o software adicional. Un ejemplo de lo anterior se puede apreciar en algunas aplicaciones de Internet, que requieren que la computadora cliente tenga instalado un pequeño programa para poder visualizar objetos realizados con la aplicación multimedia Flash. Otro claro ejemplo se puede notar cuando se utiliza alguna versión del sistema operativo Linux, y se requiere compilar algún código fuente válido para este sistema operativo, ya que para llevar a cabo esta acción, debemos tener instalados en la computadora los paquetes que contienen a los compiladores. 4.3 Mobiliario especial y equipo adicional. Es natural que se deba contar con el espacio físico necesario para colocar todos los equipos de cómputo y componentes de la red, así como contar con el mobiliario para contener a dichos elementos. Básicamente el mobiliario empleado en las redes locales es el siguiente: o Mueble para computadora. Puede ser de madera o algún derivado, e incluso puede ser metálico.o Escritorio para oficina.o Sillón ejecutivo.o Sillas con o sin soporte para brazo.o Rack. Este es un elemento muy importante para la colocación de los servidores y algunos otros elementos de la red.
Rack
Dependiendo de las circunstancias, algunas mesas con las dimensiones adecuadas se pueden adaptar para contener los equipos de cómputo, aunque debe asegurarse que pueden soportar completamente el peso del equipo contenido. Con respecto a las sillas existe una gran variedad en el mercado, algunas proporcionan un mayor confort que otras, y su adquisición depende del presupuesto destinado para este mobiliario. Es también necesario contar con algunas herramientas básicas para la instalación de la red, las cuales se mencionan a continuación: o Taladro eléctrico.o Brocas para perforar metal y concreto.o Destornilladores plano y de cruz.o Pinzas ponchadoras RJ45.o Flexómetro.o Pinzas de corte y de punta.o Cutter o navaja.o Segueta.o Multímetro.o Conectores extra RJ45 (o los necesarios dependiendo del tipo de cableado).o Cinta aislante.o Martillo.o Cautín y soldadura.o Escalera.o Grapas sujetadoras.
Herramientas
Estas herramientas se pueden considerar básicas para la instalación de una red local, aunque dependiendo del medio de transmisión utilizado y los componentes de la red, pueden requerirse algunas herramientas adicionales. 4.4 Instalación de LAN. En el capítulo anterior se vio sobre la configuración del hardware y software de la red local, y se observó que estas configuraciones están en función de los elementos físicos y lógicos con los que se cuenta para la instalación de la LAN, por lo que la instalación dependerá del conjunto total de los componentes de la red local. El resultado de esta instalación se podrá apreciar en el momento en que se realicen algunas pruebas que permitan darnos cuenta de la situación actual de la red local.

¿como se instala una red?

Instalación de Redes de Computadoras

Una de las actividades centrales de la cadena de Redes de Computadoras es la instalación de una red local real, que sea solicitada por alguna unidad de la Universidad Simón Bolívar. La actividad se desarrolla a lo largo de los dos trimestres que dura la cadena. Con frecuencia se trata de una red que se conectará a la red de la Universidad, USBnet. Para esto los estudiantes deben ponerse en contacto y coordinar acciones con la Dirección de Servicios Telemáticos (DST). Al final del primer trimestre se debe presentar un proyecto de la instalación de la red, que consiste en un diseño y un presupuesto. Para el diseño se debe especificar, en un plano de la unidad donde se instalará la red,
La ubicación de los puntos de red.
La ubicación del concentrador y el tipo de concentrador a utilizar
Forma en que la red se conectará a USBnet.
Un servicio de red a instalar, que puede ser un servicio para compartir archivos, servicio de impresión, correo electrónico, página Web, etc.
Con frecuencia el servicio es un dispositivo NAT (Network Address Translation) debido a que la unidad tiene muy pocos número IP asignados, a veces un solo IP.
El presupuesto debe incluir
Descripción del material a adquirir.
Costo del material
Normalmente la red es financiada por la unidad a la que se le está haciendo la instalación, aunque en ocasiones recibe material de la DST o utiliza material asignado al Laboratorio Docente de Redes, perteneciente al Laboratorio F.
Algunas redes instaladas por los estudiantes en diversas ediciones del curso entre 1999 y el año 2003 se enumeran a continuación, con enlaces a la descripción de la red y algunas fotografías de la instalación.

tipos de redes

TIPOS DE REDES

Existen varios tipos de redes, los cuales se clasifican de acuerdo a su tamaño y distribución lógica.
Clasificación segun su tamaño
Las redes PAN (red de administración personal) son redes pequeñas, las cuales están conformadas por no más de 8 equipos, por ejemplo: café Internet.
CAN: Campus Area Network, Red de Area Campus. Una CAN es una colección de LANs dispersadas geográficamente dentro de un campus (universitario, oficinas de gobierno, maquilas o industrias) pertenecientes a una misma entidad en una área delimitada en kilometros. Una CAN utiliza comúnmente tecnologías tales como FDDI y Gigabit Ethernet para conectividad a través de medios de comunicación tales como fibra óptica y espectro disperso.
Las redes LAN (Local Area Network, redes de área local) son las redes que todos conocemos, es decir, aquellas que se utilizan en nuestra empresa. Son redes pequeñas, entendiendo como pequeñas las redes de una oficina, de un edificio. Debido a sus limitadas dimensiones, son redes muy rápidas en las cuales cada estación se puede comunicar con el resto. Están restringidas en tamaño, lo cual significa que el tiempo de transmisión, en el peor de los casos, se conoce. Además, simplifica la administración de la red.Suelen emplear tecnología de difusión mediante un cable sencillo (coaxial o UTP) al que están conectadas todas las máquinas. Operan a velocidades entre 10 y 100 Mbps.
Características preponderantes:
Los canales son propios de los usuarios o empresas.
Los enlaces son líneas de alta velocidad.
Las estaciones están cercas entre sí.
Incrementan la eficiencia y productividad de los trabajos de oficinas al poder compartir información.
Las tasas de error son menores que en las redes WAN.
La arquitectura permite compartir recursos.
LANs mucha veces usa una tecnología de transmisión, dada por un simple cable, donde todas las computadoras están conectadas. Existen varias topologías posibles en la comunicación sobre LANs, las cuales se verán mas adelante.
Las redes WAN (Wide Area Network, redes de área extensa) son redes punto a punto que interconectan países y continentes. Al tener que recorrer una gran distancia sus velocidades son menores que en las LAN aunque son capaces de transportar una mayor cantidad de datos. El alcance es una gran área geográfica, como por ejemplo: una ciudad o un continente. Está formada por una vasta cantidad de computadoras interconectadas (llamadas hosts), por medio de subredes de comunicación o subredes pequeñas, con el fin de ejecutar aplicaciones, programas, etc.
Una red de área extensa WAN es un sistema de interconexión de equipos informáticos geográficamente dispersos, incluso en continentes distintos. Las líneas utilizadas para realizar esta interconexión suelen ser parte de las redes públicas de transmisión de datos.
Las redes LAN comúnmente, se conectan a redes WAN, con el objetivo de tener acceso a mejores servicios, como por ejemplo a Internet. Las redes WAN son mucho más complejas, porque deben enrutar correctamente toda la información proveniente de las redes conectadas a ésta.
Una subred está formada por dos componentes:
Líneas de transmisión: quienes son las encargadas de llevar los bits entre los hosts.
Elementos interruptores (routers): son computadoras especializadas usadas por dos o más líneas de transmisión. Para que un paquete llegue de un router a otro, generalmente debe pasar por routers intermedios, cada uno de estos lo recibe por una línea de entrada, lo almacena y cuando una línea de salida está libre, lo retransmite.
INTERNET WORKS: Es una colección de redes interconectadas, cada una de ellas puede estar desallorrada sobre diferentes software y hardware. Una forma típica de Internet Works es un grupo de redes LANs conectadas con WANs. Si una subred le sumamos los host obtenemos una red.
El conjunto de redes mundiales es lo que conocemos como Internet.
Las redes MAN (Metropolitan Area Network, redes de área metropolitana) , comprenden una ubicación geográfica determinada "ciudad, municipio", y su distancia de cobertura es mayor de 4 Kmts. Son redes con dos buses unidireccionales, cada uno de ellos es independiente del otro en cuanto a la transferencia de datos. Es básicamente una gran versión de LAN y usa una tecnología similar. Puede cubrir un grupo de oficinas de una misma corporación o ciudad, esta puede ser pública o privada. El mecanismo para la resolución de conflictos en la transmisión de datos que usan las MANs, es DQDB.
DQDB consiste en dos buses unidireccionales, en los cuales todas las estaciones están conectadas, cada bus tiene una cabecera y un fin. Cuando una computadora quiere transmitir a otra, si esta está ubicada a la izquierda usa el bus de arriba, caso contrario el de abajo.
Redes Punto a Punto. En una red punto a punto cada computadora puede actuar como cliente y como servidor. Las redes punto a punto hacen que el compartir datos y periféricos sea fácil para un pequeño grupo de gente. En una ambiente punto a punto, la seguridad es difícil, porque la administración no está centralizada.
Redes Basadas en servidor. Las redes basadas en servidor son mejores para compartir gran cantidad de recursos y datos. Un administrador supervisa la operación de la red, y vela que la seguridad sea mantenida. Este tipo de red puede tener uno o mas servidores, dependiendo del volumen de tráfico, número de periféricos etc. Por ejemplo, puede haber un servidor de impresión, un servidor de comunicaciones, y un servidor de base de datos, todos en una misma red.
Clasificación según su distribución lógica
Todos los ordenadores tienen un lado cliente y otro servidor: una máquina puede ser servidora de un determinado servicio pero cliente de otro servicio.
Servidor. Máquina que ofrece información o servicios al resto de los puestos de la red. La clase de información o servicios que ofrezca determina el tipo de servidor que es: servidor de impresión, de archivos, de páginas web, de correo, de usuarios, de IRC (charlas en Internet), de base de datos...
Cliente. Máquina que accede a la información de los servidores o utiliza sus servicios. Ejemplos: Cada vez que estamos viendo una página web (almacenada en un servidor remoto) nos estamos comportando como clientes. También seremos clientes si utilizamos el servicio de impresión de un ordenador remoto en la red (el servidor que tiene la impresora conectada).
Todas estas redes deben de cumplir con las siguientes características:
Confiabilidad "transportar datos".
Transportabilidad "dispositivos".
Gran procesamiento de información.
y de acuerdo estas, tienen diferentes usos, dependiendo de la necesidad del usuario, como son:
Compañías - centralizar datos.
Compartir recursos "periféricos, archivos, etc".
Confiabilidad "transporte de datos".
aumentar la disponibilidad de la información.
Comunicación entre personal de las mismas áreas.
Ahorro de dinero.
Home Banking.
Aportes a la investigación "vídeo demanda,line T.V,Game Interactive".

topologia de redes

Topología de red

Arquitecturas de red
La arquitectura o topología de red es la disposición física en la que se conectan los nodos de una red de ordenadores o servidores, mediante la combinación de estándares y protocolos.














Define las reglas de una red y cómo interactúan sus componentes. Estos equipos de red pueden conectarse de muchas y muy variadas maneras. La conexión más simple es un enlace unidireccional entre dos nodos. Se puede añadir un enlace de retorno para la comunicación en ambos sentidos. Los cables de comunicación modernos normalmente incluyen más de un cable para facilitar esto, aunque redes muy simples basadas en buses tienen comunicación bidireccional en un solo cable.
En casos mixtos se puede usar la palabra arquitectura en un sentido relajado para hablar a la vez de la disposición física del cableado y de cómo el protocolo considera dicho cableado. Así, en un anillo con una MAU podemos decir que tenemos una topología en anillo, o de que se trata de un anillo con topología en estrella.
La topología de red la determina únicamente la configuración de las conexiones entre nodos. La distancia entre los nodos, las interconexiones físicas, las tasas de transmisión y/o los tipos de señales no pertenecen a la topología de la red, aunque pueden verse afectados por la misma.
Tabla de contenidos


Tipos de arquitecturas

Redes centralizadas
La topologia en estrella reduce la posibilidad de fallo de red conectando todos los nodos a un nodo central. Cuando se aplica a una red basada en la topologia estrella este concentrador central reenvía todas las transmisiones recibidas de cualquier nodo periférico a todos los nodos periféricos de la red, algunas veces incluso al nodo que lo envió. Todos los nodos periféricos se pueden comunicar con los demás transmitiendo o recibiendo del nodo central solamente. Un fallo en la línea de conexión de cualquier nodo con el nodo central provocaría el aislamiento de ese nodo respecto a los demás, pero el resto de sistemas permanecería intacto. El tipo de concentrador hub se utiliza en esta topología.
La desventaja radica en la carga que recae sobre el nodo central. La cantidad de tráfico que deberá soportar es grande y aumentará conforme vayamos agregando más nodos periféricos, lo que la hace poco recomendable para redes de gran tamaño. Además, un fallo en el nodo central puede dejar inoperante a toda la red. Esto último conlleva también una mayor vulnerabilidad de la red, en su conjunto, ante ataques.
Si el nodo central es pasivo, el nodo origen debe ser capaz de tolerar un eco de su transmisión. Una red en estrella activa tiene un nodo central activo que normalmente tiene los medios para prevenir problemas relacionados con el eco
Una topología en árbol (también conocida como topología jerárquica) puede ser vista como una colección de redes en estrella ordenadas en una jerarquía. Éste árbol tiene nodos periféricos individuales (por ejemplo hojas) que requieren transmitir a y recibir de otro nodo solamente y no necesitan actuar como repetidores o regeneradores. Al contrario que en las redes en estrella, la función del nodo central se puede distribuir.
Como en las redes en estrella convencionales, los nodos individuales pueden quedar aislados de la red por un fallo puntual en la ruta de conexión del nodo. Si falla un enlace que conecta con un nodo hoja, ese nodo hoja queda aislado; si falla un enlace con un nodo que no sea hoja, la sección entera queda aislada del resto.
Para aliviar la cantidad de tráfico de red que se necesita para retransmitir todo a todos los nodos, se desarrollaron nodos centrales más avanzados que permiten mantener un listado de las identidades de los diferentes sistemas conectados a la red. Éstos switches de red “aprenderían” cómo es la estructura de la red transmitiendo paquetes de datos a todos los nodos y luego observando de dónde vienen los paquetes respuesta787887878

Descentralización
En una topología en malla, hay al menos dos nodos con dos o más caminos entre ellos. Un tipo especial de malla en la que se limite el número de saltos entre dos nodos, es un hipercubo. El número de caminos arbitrarios en las redes en malla las hace más difíciles de diseñar e implementar, pero su naturaleza descentralizada las hace muy útiles.
Un red totalmente conectada o completa, es una topología de red en la que hay un enlace directo entre cada pareja de nodos. En una red totalmente conexa con n nodos, hay enlaces directos. Las redes diseñadas con esta topología, normalmente son caras de instalar, pero son muy fiables gracias a los múltiples caminos por los que los datos pueden viajar. Se ve principalmente en aplicaciones militares.

¿que es una red?

¿QUE ES UNA RED?
Cada uno de los tres siglos pasados ha estado dominado por una sola tecnología. El siglo XVIII fue la etapa de los grandes sistemas mecánicos que acompañaron a la Revolución Industrial. El siglo XIX fue la época de la máquina de vapor. Durante el siglo XX, la tecnología clave ha sido la recolección, procesamiento y distribución de información. Entre otros desarrollos, hemos asistido a la instalación de redes telefónicas en todo el mundo, a la invención de la radio y la televisión, al nacimiento y crecimiento sin precedente de la industria de los ordenadores ( computadores ), asi como a la puesta en orbita de los satélites de comunicación.
A medida que avanzamos hacia los últimos años de este siglo, se ha dado una rápida convergencia de estas áreas, y también las diferencias entre la captura, transporte almacenamiento y procesamiento de información están desapareciendo con rapidez. Organizaciones con centenares de oficinas dispersas en una amplia área geográfica esperan tener la posibilidad de examinar en forma habitual el estaso actual de todas ellas, simplemente oprimiendo una tecla. A medida que crece nuestra habilidad para recolectar procesar y distribuir información, la demanda de mas sofisticados procesamientos de información crece todavía con mayor rapidez.
La industria de ordenadores ha mostrado un progreso espectacular en muy corto tiempo. El viejo modelo de tener un solo ordenador para satisfacer todas las necesidades de cálculo de una organización se está reemplazando con rapidez por otro que considera un número grande de ordenadores separados, pero interconectados, que efectúan el mismo trabajo. Estos sistemas, se conocen con el nombre de redes de ordenadores. Estas nos dan a entender una colección interconectada de ordenadores autónomos. Se dice que los ordenadores están interconectados, si son capaces de intercambiar información. La conexión no necesita hacerse a través de un hilo de cobre, el uso de láser, microondas y satélites de comunicaciones. Al indicar que los ordenadores son autónomos, excluimos los sistemas en los que un ordenador pueda forzosamente arrancar, parar o controlar a otro, éstos no se consideran autónomos.
USOS DE LAS REDES DE ORDENADORES
Objetivos de las redes
Las redes en general, consisten en "compartir recursos", y uno de sus objetivo es hacer que todos los programas, datos y equipo estén disponibles para cualquiera de la red que así lo solicite, sin importar la localización física del recurso y del usuario. En otras palabras, el hecho de que el usuario se encuentre a 1000 km de distancia de los datos, no debe evitar que este los pueda utilizar como si fueran originados localmente.
Un segundo objetivo consiste en proporcionar una alta fiabilidad, al contar con fuentes alternativas de suministro. Por ejemplo todos los archivos podrían duplicarse en dos o tres máquinas, de tal manera que si una de ellas no se encuentra disponible, podría utilizarse una de las otras copias. Además, la precencia de múltiples CPU significa que si una de ellas deja de funcionar, las otras pueden ser capaces de encarqarse de su trabajo, aunque se tenga un rendimiento global menor.
Otro objetivo es el ahorro económico. Los ordenadores pequeños tienen una mejor relación costo / rendimiento, comparada con la ofrecida por las máquinas grandes. Estas son, a grandes rasgos, diez veces mas rápidas que el mas rápido de los microprocesadores, pero su costo es miles de veces mayor. Este desequilibrio ha ocasionado que muchos diseñadores de sistemas construyan sistemas constituidos por poderosos ordenadores personales, uno por usuario, con los datos guardados una o mas máquinas que funcionan como servidor de archivo compartido.
Este objetivo conduce al concepto de redes con varios ordenadores en el mismo edificio. A este tipo de red se le denomina LAN ( red de área local ), en contraste con lo extenso de una WAN ( red de área extendida ), a la que también se conoce como red de gran alcance.
Un punto muy relacionado es la capacidad para aumentar el rendimiento del sistama en forma gradual a medida que crece la carga, simplemente añadiendo mas procesadores. Con máquinas grandes, cuando el sistema esta lleno, deberá reemplazarse con uno mas grande, operación que por lo normal genera un gran gasto y una perturbación inclusive mayor al trabajo de los usuarios.
Otro objetivo del establecimiento de una red de ordenadores, es que puede proporcionar un poderoso medio de comunicación entre personas que se encuentran muy alejadas entre si. Con el ejemplo de una red es relativamente fácil para dos o mas personas que viven en lugares separados, escribir informes juntos. Cuando un autor hace un cambio inmediato, en lugar de esperar varios dias para recibirlos por carta. Esta rapidez hace que la cooperación entre grupos de individuos que se encuentran alejados, y que anteriormente había sido imposible de establecer, pueda realizarse ahora.
En la siguiente tabla se muestra la clasificación de sistemas multiprocesadores distribuidos de acuerdo con su tamaño físico. En la parte superior se encuentran las máquinas de flujo de datos, que son ordenadores con un alto nivel de paralelismo y muchas unidades funcionales trabajando en el mismo programa. Después vienen los multiprocesadores, que son sistemas que se comunican a través de memoria compartida. En seguida de los multiprocesadores se muestran verdaderas redes, que son ordenadores que se comunican por medio del intercambio de mensajes. Finalmente, a la conexión de dos o mas redes se le denomina interconexión de redes.

Aplicación de las redes
El reemplazo de una máquina grande por estaciones de trabajo sobre una LAN no ofrece la posibilidad de introducir muchas aplicaciones nuevas, aunque podrían mejorarse la fiabilidad y el rendimiento. Sin embargo, la disponibilidad de una WAN ( ya estaba antes ) si genera nuevas aplicaciones viables, y algunas de ellas pueden ocasionar importantes efectos en la totalidad de la sociedad. Para dar una idea sobre algunos de los usos importantes de redes de ordenadores, veremos ahora brevemente tres ejemplos: el acceso a programas remotos, el acceso a bases de datos remotas y facilidades de comunicación de valor añadido.
Una compañía que ha producido un modelo que simula la economía mundial puede permitir que sus clientes se conecten usando la red y corran el programa para ver como pueden afectar a sus negocios las diferentes proyecciones de inflación, de tasas de interés y de fluctuaciones de tipos de cambio. Con frcuencia se prefiere este planteamiento que vender los derechos del programa, en especial si el modelo se está ajustando constantemente ó necesita de una máquina muy grande para correrlo.
Todas estas aplicaciones operan sobre redes por razones económicas: el llamar a un ordenador remoto mediante una red resulta mas económico que hacerlo directamente. La posibilidad de tener un precio mas bajo se debe a que el enlace de una llamada telefónica normal utiliza un circuito caro y en exclusiva durante todo el tiempo que dura la llamada, en tanto que el acceso a través de una red, hace que solo se ocupen los enlaces de larga distancia cuado se están transmitiendo los datos.
Una tercera forma que muestra el amplio potencial del uso de redes, es su empleo como medio de comunicación(INTERNET). Como por ejemplo, el tan conocido por todos, correo electrónico (e-mail ), que se envía desde una terminal , a cualquier persona situada en cualquier parte del mundo que disfrute de este servicio. Además de texto, se pueden enviar fotografías e imágenes.
ESTRUCTURA DE UNA RED
En toda red existe una colección de máquinas para correr programas de usuario ( aplicaciones ). Seguiremos la terminología de una de las primeras redes, denominada ARPANET, y llamaremos hostales a las máquinas antes mencionadas. También, en algunas ocasiones se utiliza el término sistema terminal o sistema final. Los hostales están conectados mediante una subres de comunicación, o simplemente subred. El trabajo de la subred consiste en enviar mensajes entre hostales, de la misma manera como el sistema telefónico envía palabras entre la persona que habla y la que escucha. El diseño completo de la red simplifica notablemente cuando se separan los aspectos puros de comunicación de la red ( la subred ), de los aspectos de aplicación ( los hostales ).
Una subred en la mayor parte de las redes de área extendida consiste de dos componentes diferentes: las líneas de transmisión y los elementos de conmutación. Las líneas de transmisión ( conocidas como circuitos, canales o troncales ), se encargan de mover bits entre máquinas.
Los elementos de conmutación son ordenadores especializados que se utilizan para conectar dos o mas líneas de de transmisión. Cuando los datos llegan por una línea de entrada, el elemento de conmutación deberá seleccionar una línea de salida para reexpedirlos
EJEMPLO DE REDES
Un número muy grande de redes se encuentran funcionando, actualmente, en todo el mundo, algunas de ellas son redes públicas operadas por proveedores de servicios portadores comunes o PTT, otras están dedicadas a la investigación, también hay redes en cooperativas operadas por los mismos usuarios y redes de tipo comercial o corporativo.
Las redes, por lo general, difieren en cuanto a su historia, administración, servicios que ofrecen, diseño técnico y usuarios. La historia y la administración pueden variar desde una red cuidadosamente elanorada por una sola organización, con un objetivo muy bien definido, hasta una colección específica de máquinas, cuya conexión se fue realizando con el paso del tiempo, sin ningún plan maestro o administración central que la supervisara. Los servicios ofrecidos van desde una comunicación arbitraria de proceso a proceso, hasta llegar al correo electrónico, la transferencia de archivos, y el acceso y ejecución remota. Los diseños técnicos se diferencian en el medio de transmisión empleado, los algoritmos de encaminamiento y de donominación utilizados, el número y contenido de las capas presentes y los protocolos usados. Por último, las comunidades de usuarios pueden variar desde una sola corporacion, hasta aquella que incluye todos los ordenadores científicos que se encuentren en el mundo industrializado.
Redes de comunicación:
La posibilidad de compartir con carácter universal la información entre grupos de computadoras y sus usuarios; un componente vital de la era de la información. La generalización de la computadora personal (PC) y de la red de área local (LAN) durante la década de los ochenta ha dado lugar a la posibilidad de acceder a información en bases de datos remotas; cargar aplicaciones desde puntos de ultramar; enviar mensajes a otros países y compartir ficheros, todo ello desde una computadora personal.
Las redes que permiten todo esto son equipos avanzados y complejos. Su eficacia se basa en la confluencia de muy diversos componentes. El diseño e implantación de una red mundial de ordenadores es uno de los grandes milagros tecnológicos de las últimas décadas.
Módems y empresas de servicios:
Todavía en la década de los setenta las computadoras eran máquinas caras y frágiles que estaban al cuidado de especialistas y se guardaban en recintos vigilados. Para utilizarlos se podía conectar un terminal directamente o mediante una línea telefónica y un módem para acceder desde un lugar remoto. Debido a su elevado costo, solían ser recursos centralizados a los que el usuario accedía por cuenta propia. Durante esta época surgieron muchas organizaciones, las empresas de servicios, que ofrecían tiempo de proceso en una mainframe. Las redes de computadoras no estaban disponibles comercialmente. No obstante, se inició en aquellos años uno de los avances más significativos para el mundo de la tecnología: los experimentos del Departamento de Defensa norteamericano con vistas a distribuir los recursos informáticos como protección contra los fallos. Este proyecto se llama ahora Internet.
Redes de área local (LAN)
Uno de los sucesos más críticos para la conexión en red lo constituye la aparición y la rápida difusión de la red de área local (LAN) como forma de normalizar las conexiones entre las máquinas que se utilizan como sistemas ofimáticos. Como su propio nombre indica, constituye una forma de interconectar una serie de equipos informáticos. A su nivel más elemental, una LAN no es más que un medio compartido (como un cable coaxial al que se conectan todas las computadoras y las impresoras) junto con una serie de reglas que rigen el acceso a dicho medio. La LAN más difundida, la Ethernet, utiliza un mecanismo denominado Call Sense Multiple Access-Collision Detect (CSMS-CD). Esto significa que cada equipo conectado sólo puede utilizar el cable cuando ningún otro equipo lo está utilizando. Si hay algún conflicto, el equipo que está intentando establecer la conexión la anula y efectúa un nuevo intento más adelante. La Ethernet transfiere datos a 10 Mbits/seg, lo suficientemente rápido como para hacer inapreciable la distancia entre los diversos equipos y dar la impresión de que están conectados directamente a su destino.
Ethernet y CSMA-CD son dos ejemplos de LAN. Hay tipologías muy diversas (bus, estrella, anillo) y diferentes protocolos de acceso. A pesar de esta diversidad, todas las LAN comparten la característica de poseer un alcance limitado (normalmente abarcan un edificio) y de tener una velocidad suficiente para que la red de conexión resulte invisible para los equipos que la utilizan.
Además de proporcionar un acceso compartido, las LAN modernas también proporcionan al usuario multitud de funciones avanzadas. Hay paquetes de software de gestión para controlar la configuración de los equipos en la LAN, la administración de los usuarios, y el control de los recursos de la red. Una estructura muy utilizada consiste en varios servidores a disposición de distintos (con frecuencia, muchos) usuarios. Los primeros, por lo general máquinas más potentes, proporcionan servicios como control de impresión, ficheros compartidos y correo a los últimos, por lo general computadoras personales.
Routers y bridges
Los servicios en la mayoría de las LAN son muy potentes. La mayoría de las organizaciones no desean encontrarse con núcleos aislados de utilidades informáticas. Por lo general prefieren difundir dichos servicios por una zona más amplia, de manera que los grupos puedan trabajar independientemente de su ubicación. Los routers y los bridges son equipos especiales que permiten conectar dos o más LAN. El bridge es el equipo más elemental y sólo permite conectar varias LAN de un mismo tipo. El router es un elemento más inteligente y posibilita la interconexión de diferentes tipos de redes de ordenadores.
Las grandes empresas disponen de redes corporativas de datos basadas en una serie de redes LAN y routers. Desde el punto de vista del usuario, este enfoque proporciona una red físicamente heterogénea con aspecto de un recurso homogéneo.
Redes de área extensa (WAN)
Cuando se llega a un cierto punto deja de ser poco práctico seguir ampliando una LAN. A veces esto viene impuesto por limitaciones físicas, aunque suele haber formas más adecuadas o económicas de ampliar una red de computadoras. Dos de los componentes importantes de cualquier red son la red de teléfono y la de datos. Son enlaces para grandes distancias que amplían la LAN hasta convertirla en una red de área extensa (WAN). Casi todos los operadores de redes nacionales (como DBP en Alemania o British Telecom en Inglaterra) ofrecen servicios para interconectar redes de computadoras, que van desde los enlaces de datos sencillos y a baja velocidad que funcionan basándose en la red pública de telefonía hasta los complejos servicios de alta velocidad (como frame relay y SMDS-Synchronous Multimegabit Data Service) adecuados para la interconexión de las LAN. Estos servicios de datos a alta velocidad suelen denominarse conexiones de banda ancha. Se prevé que proporcionen los enlaces necesarios entre LAN para hacer posible lo que han dado en llamarse autopistas de la información.
Proceso distribuido:
Parece lógico suponer que las computadoras podrán trabajar en conjunto cuando dispongan de la conexión de banda ancha. ¿Cómo conseguir, sin embargo, que computadoras de diferentes fabricantes en distintos países funcionen en común a través de todo el mundo? Hasta hace poco, la mayoría de las computadoras disponían de sus propias interfaces y presentaban su estructura particular. Un equipo podía comunicarse con otro de su misma familia, pero tenía grandes dificultades para hacerlo con un extraño. Sólo los más privilegiados disponían del tiempo, conocimientos y equipos necesarios para extraer de diferentes recursos informáticos aquello que necesitaban.
En los años noventa, el nivel de concordancia entre las diferentes computadoras alcanzó el punto en que podían interconectarse de forma eficaz, lo que le permite a cualquiera sacar provecho de un equipo remoto. Los principales componentes son:
Cliente/servidor
En vez de construir sistemas informáticos como elementos monolíticos, existe el acuerdo general de construirlos como sistemas cliente/servidor. El cliente (un usuario de PC) solicita un servicio (como imprimir) que un servidor le proporciona (un procesador conectado a la LAN). Este enfoque común de la estructura de los sistemas informáticos se traduce en una separación de las funciones que anteriormente forman un todo. Los detalles de la realización van desde los planteamientos sencillos hasta la posibilidad real de manejar todos los ordenadores de modo uniforme.
Tecnología de objetos:
Otro de los enfoques para la construcción de los sistemas parte de la hipótesis de que deberían estar compuestos por elementos perfectamente definidos, objetos encerrados, definidos y materializados haciendo de ellos agentes independientes. La adopción de los objetos como medios para la construcción de sistemas informáticos ha colaborado a la posibilidad de intercambiar los diferentes elementos.
Sistemas abiertos
Esta definición alude a sistemas informáticos cuya arquitectura permite una interconexión y una distribución fáciles. En la práctica, el concepto de sistema abierto se traduce en desvincular todos los componentes de un sistema y utilizar estructuras análogas en todos los demás. Esto conlleva una mezcla de normas (que indican a los fabricantes lo que deberían hacer) y de asociaciones (grupos de entidades afines que les ayudan a realizarlo). El efecto final es que sean capaces de hablar entre sí.
El objetivo último de todo el esfuerzo invertido en los sistemas abiertos consiste en que cualquiera pueda adquirir computadoras de diferentes fabricantes, las coloque donde quiera, utilice conexiones de banda ancha para enlazarlas entre sí y las haga funcionar como una máquina compuesta capaz de sacar provecho de las conexiones de alta velocidad.
Seguridad y gestión:
El hecho de disponer de rápidas redes de computadoras capaces de interconectarse no constituye el punto final de este enfoque. Quedan por definir las figuras del "usuario de la autopista de la información" y de los "trabajos de la autovía de la información".
Seguridad
La seguridad informática va adquiriendo una importancia creciente con el aumento del volumen de información importante que se halla en las computadoras distribuidas. En este tipo de sistemas resulta muy sencillo para un usuario experto acceder subrepticiamente a datos de carácter confidencial. La norma Data Encryption System (DES) para protección de datos informáticos, implantada a finales de los años setenta, se ha visto complementada recientemente por los sistemas de clave pública que permiten a los usuarios codificar y descodificar con facilidad los mensajes sin intervención de terceras personas.
Gestión
La labor de mantenimiento de la operativa de una LAN exige dedicación completa. Conseguir que una red distribuida por todo el mundo funcione sin problemas supone un reto aún mayor. Últimamente se viene dedicando gran atención a los conceptos básicos de la gestión de redes distribuidas y heterogéneas. Hay ya herramientas suficientes para esta importante parcela que permiten supervisar de manera eficaz las redes globales.
Las redes de ordenadores:
Definir el concepto de redes implica diferenciar entre el concepto de redes físicas y redes de comunicación.
Respecto a la estructura física, los modos de conexión física, los flujos de datos, etc; podemos decir que una red la constituyen dos o más ordenadores que comparten determinados recursos, sea hardware (impresoras, sistemas de almacenamiento, ...) sea software (aplicaciones, archivos, datos...).
Desde una perspectiva más comunicativa y que expresa mejor lo que puede hacerse con las redes en la educación, podemos decir que existe una red cuando están involucrados un componente humano que comunica, un componente tecnológico (ordenadores, televisión, telecomunicaciones) y un componente administrativo (institución o instituciones que mantienen los servicios). Una red, más que varios ordenadores conectados, la constituyen varias personas que solicitan, proporcionan e intercambian experiencias e informaciones a través de sistemas de comunicación.
Atendiendo al ámbito que abarcan, tradicionalmente se habla de:
Redes de Área Local (conocidas como LAN) que conectan varias estaciones dentro de la misma institución,
Redes de Área Metropolitana (MAN),
Area extensa (WAN),
Por su soporte físico:
Redes de fibra óptica,
Red de servicios integrados (RDSI),
Si nos referimos a las redes de comunicación podemos hablar de Internet, BITNET, USENET FIDONET o de otras grandes redes.Pero, en el fondo, lo que verdaderamente nos debe interesar como educadores es el flujo y el tipo de información que en estas redes circula. Es decir, que las redes deben ser lo más transparentes posibles, de tal forma que el usuario final no requiera tener conocimiento de la tecnología (equipos y programas) utilizada para la comunicación (o no debiera, al menos).
Las distintas configuraciones tecnológicas y la diversidad de necesidades planteadas por los usuarios, lleva a las organizaciones a presentar cierta versatilidad en el acceso a la documentación, mediante una combinación de comunicación sincrónica y asincrónica.
La comunicación sincrónica (o comunicación a tiempo real) contribuiría a motivar la comunicación, a simular las situaciones, cara a cara, mientras que la comunicación asincrónica (o retardada) ofrece la posibilidad de participar e intercambiar información desde cualquier sitio y en cualquier momento, permitiendo a cada participante trabajar a su propio ritmo y tomarse el tiempo necesario para leer, reflexionar, escribir y revisar antes de compartir la información. Ambos tipos de comunicación son esenciales en cualquier sistema de formación apoyado en redes.
Se trataría, por lo tanto, de configurar servicios educativos o, mejor, redes de aprendizaje apoyados en:
Videoconferencia que posibilitaría la asistencia remota a sesiones de clase presencial, a actividades específicas para alumnos a distancia, o a desarrollar trabajo colaborativo en el marco de la presencia continuada.
Conferencias electrónicas, que basadas en el ordenador posibilitan la comunicación escrita sincrónica, complementando y/o extendiendo las posibilidades de la intercomunicación a distancia.
Correo electrónico, listas de discusión,... que suponen poderosas herramientas para facilitar la comunicación asincrónica mediante ordenadores.
Apoyo hipermedia (Web) que servirá de banco de recursos de aprendizaje donde el alumno pueda encontrar los materiales además de orientación y apoyo.
Otras aplicaciones de Internet tanto de recuperación de ficheros (Gopher, FTP, ...) como de acceso remoto (telnet...).
Ello implica, junto a la asistencia virtual a sesiones en la institución sean específicas o no mediante la videoconferencia y la posibilidad de presencia continuada, facilitar la transferencia de archivos (materiales básicos de aprendizaje, materiales complementarios, la consulta a materiales de referencia) entre la sede (o sedes, reales o virtuales) y los usuarios.
Aunque el sistema de transferencia es variado dependiendo de multiples factores (tipo de documento, disponilibidad tecnológica del usuario,...), está experimentando una utilización creciente la transferencia directamente a pantalla de materiales multimedia interactivos a distancia como un sistema de enseñanza a distancia a través de redes.
Pero, también, utilizando otros sistemas de transferencia puede accederse a una variada gama de materiales de aprendizaje. Se trata, en todo caso, de un proceso en dos fases: primero recuperación y después presentación.
Conclusiones:
A lo largo de la historia los ordenadores (o las computadoras) nos han ayudado a realizar muchas aplicaciones y trabajos, el hombre no satisfecho con esto, buscó mas progreso, logrando implantar comunicaciones entre varias computadoras, o mejor dicho: "implantar Redes en las computadoras"; hoy en día la llamada Internet es dueña de las redes, en cualquier parte del mundo una computadora se comunica, comparte datos, realiza transacciones en segundos, gracias a las redes.
En los Bancos, las agencias de alquiler de vehículos, las líneas aéreas, y casi todas las empresas tienen como núcleo principal de la comunicación a una RED.
Gracias a la denominada INTERNET, familias, empresas, y personas de todo el mundo, se comunican, rápida y económicamente.
Las redes agilizaron en un paso gigante al mundo, por que grandes cantidades de información se trasladan de un sitio a otro sin peligro de extraviarse en el camino.